

ENERGYSHIELD PROJECT

Introducing the project and the collaboration strategy
Facilitators: Otilia Bularca (SIMAVI)
Anna Georgiadou (NTUA)

SU-DS04-2018-2020 – SISTER PROJECTS AGENDA

- Introducing the projects
 - Energy Shield GA 832907 https://energy-shield.eu/
 - PHOENIX GA 832989 https://phoenix-h2020.eu/
 - SDN-microSENSE GA 833955 https://www.sdnmicrosense.eu/
- Collaboration strategy
- Open discussion
- Way forward

ENERGYSHIELD PROJECT IN A NUTSHELL

- Title: Integrated Cybersecurity Solution for the Vulnerability Assessment, Monitoring and Protection of Critical Energy Infrastructures
- Type of Action: Innovation Action
- Topic: SU-DS04-2018-2020
 - Cybersecurity in the Electrical Power and Energy System (EPES): an armour against cyber and privacy attacks and data breaches
- Goal
 - EnergyShield captures the needs of Electrical Power and Energy System (EPES)
 operators and combines the latest technologies for vulnerability assessment,
 supervision and protection to draft a defensive toolkit.
- Start date: 1st of July 2019
- Duration: 36 months
- Grant: € 7,421,437.38

CONSORTIUM AND PILOTS

Software Imagination & Vision Romania:

Germanv:

PSI Software AG PSI

Israel:

SI-GA Data Security (2014) LTD

Luxemburg

L7 Defense Luxembourg SARL

Sweden:

foreseeti AR

Kungliga Tekniska Hoegskolan

UK:

Tech Inspire LTD City University Of London Konnekt Able Technologies

Ireland:

Greece:

Software Company EOOD Bulgaria:

Kogen Zagore EOOD

MVETS Lenishta OOD

Elektroenergien Sistemen Operator EAD

CEZ Distribution Bulgaria AD

MIG 23 LTD **MIG 23**

DIL DIEL

Italy **IREN SPA**

CONCEPT AND OBJECTIVES

Deploy best practices, guidelines, methodologies and encourage the adoption of EnergyShield results.

Validate the practical value of the EnergyShield toolkit with EPES stakeholders.

CONCEPT ntegrate

Adapt and improve available tools to support Electrical Power and Energy System (EPES) in fighting against cyber attacks.

Integrate the cybersecurity tools in a holistic solution with assessment, monitoring, protection and learning capabilities.

TECHNICAL ACTIVITIES PROGRESS

- Analysis
- Architecture
- FRs
- NFRs

- Tools roadmap
- Tools release plan
- Demonstrators timeplan

- Integration plan
- Deployment plans
- Test plan
- Toolkit demo release timeline

User needs

Evaluation (WP6)

- Tools evaluation
- On-site deployment
- Piloting
- Evaluation

ENERGYSHIELD TOOLKIT

Small scale attacks

- Targeting specific organization
- Meant to prevent them from conducting business normally
- e.g. Distributed Denial of Service, ransomware

Large scale attacks

- Targeting the entire EPES value chain
- Meant to take down the energy supply services at regional or country level
- e.g. malware deployment, man-inthe-middle

VULNERABILITY ASSESSMENT TOOL

- Tool contributors
 - Leading partner: FOR
 - Contributing partners: KTH, PSI, SIMAVI
- Tool features
 - Threat modelling & Attack Simulations
 - Analyze cyber resilience in complex systems
 - Bayesian probability networks, Monte Carlo simulations and k-means clustering
 - Operates on a model a cyber "digital twin"
 - Non-intrusive, risk-free
 - Exactness determined by the threat modelling "language" and quality of model
 - Cyber threats are automatically derived from the structural system model
 - "The language" epesLang
 - Codifies the cyber-characteristics of ICS and the electrical energy sector systems
 - Based on Meta Attack Language (https://mal-lang.org)
- TRL Started on 7, targeting 8 (9 after project end)

SECURITY BEHAVIOR ANALYSIS TOOL

- Tool contributors
 - Leading partner: NTUA
 - Contributing partners: FOR, KTH, SC, IREN
- Tool features
 - Founded on a cyber-security culture model: levels, dimensions and domains
 - Evaluation methodology: campaigns and self-assessment possibilities
 - Socio-cultural behaviour mapping to specific cyber-threats
 - Decision-making insights and recommendations towards security culture improvement
 - Assistance into planning and implementing security culture training programs
 - Open, highly customizable and interoperable with thirdparty components
- TRL $4 \rightarrow$ TRL 8

07/08/2020

Governance

Tool contributors

- Leading partner: KT
- Contributing partners: SIGA, FOR, L7D, TEC, NTUA, SC
- Objective
 - implement a customized SIEM tool able to interact with the other EnergyShield tools and components
- TRL 6 → TRL 8
- Concept to be integrated within SIEM
 - Homomorphic encryption
 - Automated forensic tool

SIEM features

- Event Logging
- Data Storage
- Secure Authorization
- Monitoring
- Alerting
- Visualization
- System Diagnostics

ANOMALY DETECTION TOOL

Tool contributors

- Leading partner: SIGA,
- Contributing partners: IREN, SC (at the pilot's phase)

Tool features

- SIGA's topology & architecture
- Improved anomaly detection algorithms
- Extended user's understanding of anomalies
- Extended variety of sources of process data

07/08/2020

DISTRIBUTED DENIAL OF SERVICE MITIGATION TOOL

Tool contributors

- Leading partner: L7 Defense
- Contributing partners: CITY
- Objective
 - Improve the Real time DDoS mitigation for Energy IT
- TRL 6 → TRL 8

New Product Innovation Award

Anti-Distributed Denial of Service (DDoS) for Critical National Infrastructure

07/08/2020

BULGARIAN PILOT

Aim

 to evaluate the most effective solutions to prevent, detect, and mitigate malicious cyber-attacks

Scenarios

- Attacks on Substation Infrastructure
- Attacks on Consumer / Prosumer networks points

Infrastructure

- a SCADA system installed and operated the various substations.
- PLC/RTUs and measurement systems (energy meters, PMUs, DLR sensors) are interconnected by using the DNP3/IEC60870-5/IEC61850 protocols.

ITALIAN PILOT

Aim

 to evaluate the most effective solutions (hardware and software solutions, organizational approaches, changes in the procedures and qualified the staff in this field) to face malicious cyber-attacks.

Scenarios

- Testing the Security Behaviour Analysis tool on AMM (Automatic Meter Management) and ST Siemens – Network remote control system
- Perform a feasibility study on integration of the Anomaly detection tool on its specific SCADA (Supervisory Control and Data Acquisition) system – ST Siemens.

Infrastructure

- HV/MV Remote control system and SCADA
 - Network monitoring
 - Fault/outage detection
 - Emergency operations
 - Limited impacts (in terms of outages) on Clients

O. F./ Reserved connections

MV/LV SUBSTATION DEVICE

GSM

ENERGYSHIELD PILOTS COMPARATIVE APPROACH

	Bulgarian Pilot	Italian Pilot
Location	District of Sofia and Pernik, Kyustendil, Blagoevgrad, Vidin, Montana, Vratsa, Pleven and Lovech districts.	DSO network of the city of Turin, Italy
Aim	Study the cascading effects of cyberattacks throughout the value chain and analyse cybersecurity risks related to the cyber supply chain	The feasibility study (and possible offline trial on a dedicated, simulation area of the networks control systems, if feasible) will be set on Turin DSO network.
Innovation	Mitigate cyber attacks and data breaches taking into account decentralised architecture and all stakeholders of the value chain,	Possibility to test an integrated suite of cyber security tools; Defining evaluation KPIs of the testes solutions with all stakeholders involved
Approach	Involving several generators including distributed power generation (hydro and solar PV) as well as several primary substations, secondary substations and end users.	Identifying the most relevant threats and vulnerabilities in each subsystem of the network; Identifying the most effective measures to protect the systems;
Outcome	Full end-to-end demonstrator involving all stakeholders of the EPES value chain Online trial	Evaluate the most effective solutions (hardware and software solutions, organizational approaches, changes in the procedures and qualified the staff in this field) for industrialization Offline trial

INTEGRATION APPROACH

Tools testing

 available features and capabilities are tested and mapped against the needs of the pilot cases provisioned in EnergyShield project.

Toolkit integration

 EnergyShield multi-layered system covering operating systems, middleware, database and IoT harvesting methods.

Toolkit testing

 different testing from unit testing individual modules, integration testing an entire system to specialized forms of testing such as security and performance.

On site deployment

 operations to prepare EnergyShield system for assembly and transfer to the computer system(s) on which it will be run in production.

INTEGRATION PERSPECTIVES

- First stage of tests, focused on the whole toolkit, deployed at project (SIMAVI) level
- Second stage of tests, in pilot sites
 - Rent the toolkit and/or just some tools (Cloud SAAS)
 - Clone the toolkit and/or just some tools
- Integration prospects:
 - Development side focused on how to develop the different parts of the system (as a framework of tools) in a orchestrated way
 - Deployment side focused on how the final (integrated) system/solution will look like and how its specific parts will exchange and handle data and will trigger processes

INTEGRATION AND DEPLOYMENT FLOW OF ACTIVITIES

ENERGY SHIELD TOOLKIT ORGANIZATION

GANTT CHART

1st review 2nd review Final review

	S1 (july-19 – Dec-19)		S2 (Jan-20 – jun-20)		S3 (Jul-20 – Dec-20)		S4 (Jan-21 – Jun-21)		S5 (Jul-21 – Dec-21)		S6 (Jan-22- Jun-22)	
WP1 System specifications and Architecture		MS1										
WP2 Vulnerability Assessment & Security Behaviour Analysis								MS2	MS3			
WP3 Anomaly Detection & DDoS Mitigation								MS2	MS3			
WP4 Security Information & Event Management								MS2	MS3			
WP5 Toolkit Integration								MS2	MS3			
WP6 Field Trials												MS4
WP7 Communication, Dissemination & Ecosystem												MS4
WP8 Exploitation & Scale Up												MS4
WP9 Management												
WP10 Ethics								į				

PROGRESS TOWARDS OBJECTIVES

01

Adapt and improve available building tools (assessment, monitoring & protection, remediation) to support EPES needs

50%

02

Integrate the improved cyber security tools in a holistic solution with assessment, monitoring and learning capabilities

15%

03

Validate the practical value of the EnergyShield toolkit in demonstrations involving EPES stakeholders

20%

04

Develop best practices, guidelines and methodologies supporting the deployment and adoption of results in the EPES

30%

4

PILOTS COMPLETED (SC)

[M34] – WP6, 7, 8 - All pilots and evaluation reports completed. All dissemination activities completed. All exploitation activities completed

3

TOOLKIT READY (SIGA)

[M26] WP2,3,4,5 - All components ready for trials. Full solution integration complete. Solution ready for trial deployment

2

CORE MODULES READY (FOR)

[M19] WP2,3,4,5 - All components released. Early solution integration completed Pre-pilot completed.

1

USE CASES READY (SIMAVI)

[M6] WP1 - All use cases documented. Technical, commercial and regulatory specifications ready.

TECHNICAL WORK AHEAD

Tools and system releases	M12	M15	M19	M20	M26	M30	M34	M36
1st Iteration of tools								
Toolkit concept release								
Evaluation framework								
2 nd Iteration of tools								
Toolkit release v1								
1st round of field trial								
Toolkit release v2								
WP6 - 2 nd round of field trial								
3 rd iteration of tools								
Toolkit release v3 + QA								
Final version of toolkit								
WP6 -final round of field trial								

REACH OUT THE PROJECT

- Find us: www.energy-shield.eu
- Subscribe for Newsletter
- Follow us: @EnergyShield_
- Join our LinkedIn group: EnergyShield
- Contact us: EnergyShield@siveco.ro
- Video presentation: https://www.youtube.com/watch?v=AtSUn
- Project Coordinator: SIMAVI
 - Otilia Bularca, Project Manager
 - E-mail: otilia.bularca@simavi.ro
 - Phone: 0040731202178

ENERGY SHIELD

INTEGRATED CYBERSECURITY SOLUTION FOR THE VULNERABILITY ASSESSMENT, MONITORING AND PROTECTION OF CRITICAL ENERGY INFRASTRUCTURES

EnergyShield project aims at testing small-scale and large-scale disruption attack scenarios in a live cyber-defence exercise

available tools to support Electrical ower and Energy System (EPES) in

the practical value of the EnergyShield toolkit with EPES

EnergyShield toolkit

DEVELOPING THE CYBER-TOOLKIT THAT PROTECTS YOUR ENERGY GRID

EnergyShield in a nutshell

Grant Number: 832907 Type of action: Innovation Action Grant: € 7.421.437.38

18 partners from 10 countries Duration: 01/072019 - 30/06/2022

Find us: www.energy-shield.eu Follow us: @EnergyShield in Join our group: EnergyShield

Contact us: EnergyShield@siveco.ro

COLLABORATION STRATEGY

COLLABORATION APPROACH

- Sister projects (funded in the same call SU-DS04-2018-2020)
 - PHOENIX GA 832989 https://phoenix-h2020.eu/
 - SDN-microSENSE GA 833955 https://www.sdnmicrosense.eu/
 - Energy Shield GA 832907 https://energy-shield.eu
- Meeting each other (this workshop)
 - Presentation duration
 - Presentation details, e.g. project presentation (objectives, progress, challenges, etc.), framework/tools demo, etc.
 - Project mailing list (to be used for workshop invitation emails)

WAY FORWARD - SYNERGIES

- Overall discussion and further light synergies suggestions
 - Share / Join forces on social media communication channels / networking boost
 - Include on project websites a section "sister projects" with information about this related projects
 - Online workshop to share technical achievements where BRIDGE leaders could be invited to endorse the event
 - Online end-user workshop

THANK YOU | QUESTIONS

DEVELOPING THE CYBER-TOOLKIT THAT PROTECTS YOUR ENERGY GRID

